Nonexistence of twenty-fourth power residue addition sets

نویسندگان

  • Ron Evans
  • Mark Van Veen
چکیده

Let n > 1 be an integer, and let Fp denote a field of p elements for a prime p ≡ 1 (mod n). By 2015, the question of existence or nonexistence of n-th power residue difference sets in Fp had been settled for all n < 24. We settle the case n = 24 by proving the nonexistence of 24-th power residue difference sets in Fp. We also prove the nonexistence of qualified 24-th power residue difference sets in Fp. The proofs make use of a Mathematica program which computes formulas for the cyclotomic numbers of order 24 in terms of parameters occurring in quadratic partitions of p.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonexistence and existence results for a fourth-order p-Laplacian discrete Neumann boundary value problem∗

In this paper, a fourth-order nonlinear p-Laplacian difference equation is considered. Using the critical point theory, we establish various sets of sufficient conditions of the nonexistence and existence of solutions for Neumann boundary value problem and give some new results. The existing results are generalized and significantly complemented.

متن کامل

Nonexistence and existence results for a 2$n$th-order $p$-Laplacian discrete Neumann boundary value problem

This paper is concerned with a 2nth-order p-Laplacian difference equation. By using the critical point method, we establish various sets of sufficient conditions for the nonexistence and existence of solutions for Neumann boundary value problem and give some new results. Results obtained successfully generalize and complement the existing ones.

متن کامل

Asymptotic Nonexistence of Difference Sets in Dihedral Groups

Almost all known results on difference sets need severe restrictions on the parameters. The main purpose of this paper is to provide an asymptotic nonexistence result free from any assumptions on the parameters. The only assumption we make is that the underlying group is dihedral. Difference sets originally mainly were studied in cyclic groups where they exist in abundance. For example, for any...

متن کامل

Nonexistence of Abelian Difference Sets: Lander’s Conjecture for Prime Power Orders

In 1963 Ryser conjectured that there are no circulant Hadamard matrices of order > 4 and no cyclic difference sets whose order is not coprime to the group order. These conjectures are special cases of Lander’s conjecture which asserts that there is no abelian group with a cyclic Sylow p-subgroup containing a difference set of order divisible by p. We verify Lander’s conjecture for all differenc...

متن کامل

Lam’s power residue addition sets

Article history: Available online xxxx MSC: primary 05B10 secondary 11A15, 11T22, 11T24

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Finite Fields and Their Applications

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2017